MičRadar

60G Milimeter wave Bio-sensing radar

R60ABD1-Respiratory sleep radar using guide

Please read the product instructions carefully before use and keep them properlyV1.0

MicRadar Technology (Shenzhen) Co., LTD

1. Product description

Based on the millimeter wave radar system, the breathing and sleep radar realizes the perception of human biological existence and human movement, continuously records the existence of the human body, and judges the sleep state and breathing and heartbeat frequency of the target in real time according to the changes in the amplitude of body movement and the changes in breathing and heart rate during sleep. , output sleep score after a period of sleep process, and combine the output of relevant sleep parameters into the application of health and wellness. This product is installed on the top of the room. Sleep breathing function detection is not affected by factors such as temperature, humidity, noise airflow, dust, light, and complete stillness of the human body.

2. Appearance introduction

Antenna Structure

3. Main performance description

3.1. Main functions of radar

function points	State change time/function explanation
DP1: Someone/Nobody	No one to someone, report within 0.5s
	From someone to no one, 40 s output no one state
DP2: Someone is stationary / Someone is active	Static and dynamic switching, reporting within 0.5 seconds
DP3: Heartbeat rate	Output data once every 3 seconds, the unit is

	times/minute
DP4: Body Motion Amplitude Parameter 0 - 100	Output data once every 5 seconds [Reference: Description of Body Motion Amplitude Parameter Output]
DP5: Getting in/Out of bed	From getting out of bed to getting in bed, someone exists to report within 1 minute From bed entry to bed exit, the exit state is output in about 40s
DP6: Sleep state (awake/light/deep)	When in bed, judge and report the sleep state once every 10 minutes
DP7: Sleep Quality Score	At the end of the sleep process, report the score of this segment of sleep, with a score ranging from 0 to 100 points.
DP8: Respiratory/Heart Rate Rate	Output data once every 3 seconds, the unit is times/minute

3.2. Body Motion Amplitude Parameter Output Description

Body Motion Parameter		
0%	unmanned	unmanned environment
1%	still (sleep)	Only breathing without limb
2%-30%	micro-motion	Only slight head or limb movement
31%-60%	Ambulation/rapid	slower body movement
61%-100%	running/close range	rapid body movement

4. Module pin description

interface	pin	describe	Typical value	illustrate
	1	5V	5.0V	Power input positive terminal
interface 1	2	GND		land
1	3	RX	3. 3v	Serial receive
	4	ТХ	3. 3v	Serial send

MicRadar R60ABD1-Respiratory sleep radar using guide

	5	GP2		Spare expansion pins
	6	GP1		Spare expansion pins
	1	3V3	3. 3V	input power
	2	GND		land
	3	SL		reserve
interface	4	SD		reserve
2	5	GP3		Spare expansion pins
	6	GP4		Spare expansion pins
	7	GP5		Spare expansion pins
	8	GP6		Spare expansion pins

Pin Description

Note:

1) $GP1^{\sim}GP4$ are parameter selection control terminals, which can be redefined according to user needs.

2) The output signals of this interface are all 3.3VTTL level.

Use wiring diagrams

Module wiring diagram

5. Tool preparation

- 5.1TTL serial port tool, DuPont line, PC computer, serial port assistant terminal
- 5.2Radar-EVB demo board (default Tuya platform, you can freely adapt your own communication module)
- 5.3 Radar User Manual (Protocol)

6. Power-up and data rules

7. Radar Installation Instructions

7.1. Radar module working range

The beam coverage of the R60ABD1 radar module is shown in the figure below. The radar coverage is a three-dimensional sector area of 40° in the horizontal and 40° in the elevation.

Schematic diagram of R60ABD1 radar coverage area

7.2. Radar installation direction and detection range Inclined installation:

* To ensure the accuracy of radar detection, it is recommended to install it above the head of the bed and install it downward at a 45° angle!

The radar is installed obliquely, at a tilt angle of 45°, and is installed above the head of the bed. The radar installation height is recommended to be 1m higher than the bed surface; ensure that the main beam of the radar covers the detection area; there are no obvious obstructions and coverings in front of the radar. Affected by the radar installation height and radar beam range, in this installation mode, the maximum distance for human presence detection is L3 \approx 2.5 meters; the maximum distance for sleep detection is L2 \approx 2.5 meters; the maximum distance for human respiratory rate detection is L1 \approx 1.5 meters.

8. Key Functional Testing Guidelines

8.1 Sleep quality state judgment test:

8.1.1 Sleep quality status test:

When a sleep test is performed within the radar detection range, the radar will immediately report the relevant status in "awake/light/deep sleep" every 10 minutes

	When 10 minutes later, the radar sleep
carry out testing	state is successfully judged from awake
Simulate sleep for 10 minutes with	-> light sleep record radar sleep state
immobility within range	If the output can be judged normally, it
	means "pass"

Example test table format:

Testing frequency	test location	Whether to report normal sleep state	pass
the first time	front of the radar	Yes	pass

8.1.2 Judgment test of entering and leaving bed state:

When no one enters the radar detection range, it will respond immediately and report the state of entering bed

	When the radar state changes from getting
Install the radar according to the	out of bed - "into bed, it stops at the
installation requirements of the sleep	moment
scene,	Whether the recording and radar can
Keep approaching the sleeping area at a	trigger the bed-in state normally
speed of at least 0.7m/s	If it can be triggered normally, it means
	"pass"

Example test table format:

Testing	Whether entering the detection range normally	NO.9
frequency	triggers the bed entry state	pass
the first	Vec	NO.9 5
time	Ies	pass

MicRadar

8.1.3 Judgment test of getting out of bed:

When there is no one in the radar detection range, the radar will detect whether there is no human movement, breathing and other actions within the range for a period of time, and output the state of getting out of bed when it is confirmed that there is no one. (It is normal to enter the unmanned state within 5 minutes in a normal environment)

Stay at least 3m away from the sleep	When the radar state changes from	
detection area to avoid interference	entering the bed/someone is still \rightarrow	
There are no people moving around in the leaves the bed and stops for a moment		
environment and no interference from	Records radar entry and exit times	
sources of interference	When reporting "Get out of bed" within 5	
start the timer	minutes, it means "Pass"	

Example test table format:

Testing frequency	Report the time to leave bed	pass
the first time	2min10s	pass

8.2 Respiratory rate test:

8.2.1 Respiratory rate test:

When the person sits still in front of the radar detection area and the distance is kept within 1.5m, a 3-minute static calm test and a 40-s breath-holding test are performed, and the radar will output the value change of breathing in real time. When it exists, it will report the breath as 0, and report the abnormal breath hold alarm

Sit still in the specified test position,	When the radar breathing rate normally
and breathe calmly for 1 minute. After 1	outputs the value 1min before, and the
minute, hold your breath for 30s ⁴⁰ s to	breathing value can be reported as 0
see the change of radar status.	times/min after holding the breath for
	about $30s^{4}0s$, and the abnormal breath
	holding alarm is reported, it means
	"passed"

Example test table format:

ficedar R60ABD1-Respiratory sleep radar using guide

Testing frequency	Confirm that the breathing rate has the correct numerical change	pass
the first time	Yes	pass

8.2.2 Heartbeat frequency test:

When the person sits still in front of the radar detection area and the distance is kept within 1.5m, a 3-minute static calm test is performed, and the radar will judge and output the heart rate value in real time.

Sit still in the prescribed test position	When the radar heartbeat frequency is			
And take calm breathing for 3 minutes	normal, the output value			
Check whether the heartbeat value of the	means "pass"			
radar is reported normally				

Example test table format:

Testing	Confirm whether the heartbeat frequency has the	pass	
frequency	correct numerical change		
the first	Voc	pass	
time	105		

9. Guide to the actual installation steps of the radar

Step 1: Confirm the main activity and stay area of the person (above the head of the bed in the sleeping area), and 1m above the head of the bed is the installation position of the radar

Step 2: Tilt the installation angle of the radar downward by 45° to ensure that the detection range of the radar can normally cover the rest area Step 3: Confirm whether there is an interference source within the radar detection range, and remove the interference source that may affect Step 4: Follow the steps to confirm the final installation location for normal use

Example: Space size: $10 \text{ m}^2 - 20 \text{ m}^2$

Interference conditioner unit/blackout source: air outdoor

curtain/partition wall

10. Layout Requirements for Antenna and Housing

PCBA: Need to keep the height of the radar patch \geq 1mm than other devices

- Shell structure: It is necessary to maintain a distance of 3mm between the radar antenna surface and the shell surface
- Shell detection surface: non-metallic shell, need to be straight, avoid curved surface, affect the performance of the entire scanning area.

11. Common problem

Interference factors: Radar is an electromagnetic wave detection sensor, and active non-living will cause false alarms. The movement of metals, liquids, can lead to false positives. Usually, electric fans, pets close to the radar, and the shaking of metal curtains can cause false positives. Radar needs to be planned in terms of installation angle.

Non-interfering factors: radar electromagnetic waves will penetrate human

clothing, curtains, thin wood, and glass. The installation angle and performance of the radar need to be determined according to the application.

Semi-interference factor: Radar judges the existence of human body and is not suitable for directly facing the air conditioner. The motor inside the air conditioner can cause the radar to misjudge. It is required that the radar product does not directly face the air conditioner. Or in the same direction as the air conditioner.

12. Historical version update instructions

Revision	Release Data	Summary
V1.0_0520	2022/05/20	first draft